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ABSTRACT
Signals from extracellular electrodes in neural systems

record voltages resulting from activity in many neurons. De-
tecting action potentials (spikes) in a small number of spe-
cific (target) neurons is difficult because of poor SNR due to
noise generated by the firing of neighbouring neurons. A new
algorithm for spike detection has been developed: it applies
a Cepstrum of Bispectrum (CoB) estimated inverse filter to
provide blind equalization. This CoB based technique can
detect 99% of spike events with less than 1% false positives
(insertions) from the extracellular signal at up to -10dB SNR.
We compare performance with four established techniques
and report that the CoB based algorithm performs best.

1. INTRODUCTION

The tip of an extracellular micro-electrode is generally sur-
rounded by many neurons and so detects the sum of many
neurons’ electrical activities. Often it is the timing of spikes
(action potentials) in different nearby neurons which is of
interest. In some experiments, it may be possible to place
extracellular electrodes so as to isolate a single neuron’s ac-
tivity, but this is not generally the case. The closest neurons
result in the highest electrical activity at the tip, but surround-
ing neurons superimpose activity changes on the amplitude
and shape of the signal of interest. Signal transfer from neu-
ron to electrode may be resistive and/or capacitative, result-
ing in spikes appearing as weak signals whose shape and am-
plitude may differ from intracellular spike shapes because of
the transfer path characteristics [15] resulting from the cell
geometry, the distribution and density of ion channels and the
position of the recording electrode with respect to electrically
active membranes [10]. Further, the activity of distant neu-
rons may appear as noise which is highly correlated with the
target signal [4]. Finding spike trains from multiple neurons
(“spike sorting”) is generally a two stage task [13]: spikes
are first detected, and then ascribed to a particular neuron,
depending on their shape and size. This paper deals purely
with signal processing for spike detection. Extracellular neu-
ral recordings are inevitably corrupted by noise from varied
sources: the recording hardware, the ambient recording en-
vironment and the spatially averaged activity of distant cells
[2]. All these issues make the problem of spike detection
challenging.

The simplest and most widely used technique for spike
detection is amplitude thresholding. This detects events
when the signal crosses a user-specified single [1] (or pair of
[3]) amplitude thresholds which can be set manually by vi-
sual inspection or automatically, (e.g, as some multiple of the
estimated standard deviation of the signal [4]). The perfor-

mance of this technique deteriorates rapidly at low SNR [16]
since it does not employ any preprocessing [13]. Another
drawback is that overlapping neural signals may be consid-
ered as a single neural spike or alternatively missed due to
the low amplitude of the sum. This reduces the efficacy of
simple threshold detection [11].

Spike detection based on a nonlinear energy operator
(NEO) computes the product of the instantaneous amplitude
and frequency of the extracellular signal. This enhances the
spike events in the signal [8]. Since the energy computation
uses signal amplitude without compensating for noise, it does
not perform well on noisy signals.

Defining templates, and matching the signal with the
template provides another class of technique for spike detec-
tion [5]. Automatic template selection requires amplitude or
duration bootstrapping to generate approximations of actual
spikes [6]. There are many available methods for determin-
ing similarity of sections of a signal, such as sum-of-squared
differences [12], convolution [9], cross-correlation [7], and
maximum likelihood [12]. The performance of this tech-
nique again decreases in low SNR since the automatic se-
lection of a template in a noisy signal is very difficult. In ad-
dition, overlapping spikes may produce a novel spike shape
which can worsen performance.

Recent publications using coefficients of the wavelet
transform [10] have shown good performance in spike detec-
tion from neural data. The coefficients are found by carrying
out a correlation function with a mother wavelet and, given a
good choice of mother wavelet, the spike properties are en-
hanced in the coefficients produced. This transform is able
to separate signals from noise so that this technique shows
good performance in low SNR [16]. The main drawback of
this technique is the choice of an appropriate mother wavelet.
With inappropriate choices, this technique may not perform
well even in high SNR.

We propose a new spike detection algorithm that uses the
computation of Cepstrum of Bispectrum (CoB) [14] as an
inverse filtering technique. Since the CoB is a higher or-
der statistic (HOS) and because of the inherent properties of
higher order statistics, estimates from it are free from the ef-
fects of Gaussian background noise. In addition, as the the-
ory of probability underlies the CoB technique, our approach
can estimate spikes even from overlapping signals. The al-
gorithm is fully automatic and does not require any prior in-
formation about spike shape or even maximum or minimum
spike rate. The performance (detection ability) of the pro-
posed algorithm is assessed using synthesized signals and
compared with some established algorithms. Finally, we ap-
ply the technique to an actual extracellular recording.



2. ALGORITHM DESIGN FOR SPIKE DETECTION

A neurophysiological signal can be modeled as the output
of a filtered point process. The signal also contains some
other filtered point process data which is noise. Here, the
neurophysiological signal x(t) is the convolution of the spike
shape with the spike transfer characteristic s(t), integrated
over the spiking surface of the neuron. Mathematically, the
neurophysiological signal is assumed to be the output of a
linear time invariant (LTI) system that can be expressed as

x(t) = e(t)⊗ s(t)+w(t) (1)

where t is the time index, e(t) is the input point process (Pois-
son process) and w(t) is the noise which may contain both
correlated signals with different amplitudes as well as uncor-
related signals.

Blind equalization theory describes the procedure for
restoring the system input signal (e(t)) from an unknown
LTI systems output signal (x(t)). Inverse filtering is one
solution for estimating the input signal from filter’s out-
put signal. Assume we have a filter s−1(t) (an inverse of
s(t)) i.e., s−1(t)⊗ s(t) = δ (n) = 1 or in frequency domain
S−1(n)S(n) = 1 (where n is frequency index). If we apply
x(t) (from Eq. 1) to this filter s−1(t), we get an output z(t) as

z(t) = x(t)⊗ s−1(t)

= [e(t)⊗ s(t)+w(t)]⊗ s−1(t)

= e(t)⊗ s(t)⊗ s−1(t)+w(t)⊗ s−1(t)
= e(t)+ ew(t) (2)

where ew(t) is a noise component generated due to noise.
The inverse filter’s output z(t) should be similar to input sig-
nal e(t) of the original process, if ew(t) is cut-off or attenu-
ated by applying some extra processing to z(t). In the follow-
ing sections, we describe a technique to estimate the inverse
filter blindly from only the output signal x(t), and a proce-
dure to suppress and threshold noise acquired from inverse
filter output signal z(t).

2.1 Inverse Filter Estimation
Mathematically, the inverse filter s−1(t) of any invertible
linear process can be estimated from its frequency domain
transfer function (filter) S(n). We use the CoB based blind fil-
ter estimation technique to estimate the system transfer func-
tion from the output x(t). The CoB of any LTI process can
be computed by applying a 1D inverse Fourier transform op-
eration to the log-Bispectrum:

cBx(n, t) = F−1
1 [log{Bx(n, l)}]

= F−1
1 [log{γeS(n)S(l)S∗(n+ l)}]l

= log{γe}δ (t)+ log{S(n)}δ (t)

+cs(t)+ e− j2πkm/Ncs(−t) (3)

where cBx [•] is the CoB of signal x(t), F−1
1 [•]l denotes one

dimensional inverse Fourier transform to be applied to the
frequency axis l, Bx(n, l) is the bispectrum of x(t), γe is the
skewness of the input process e(t) and cs(t) is the cepstrum
of the filter s(t). The CoB is a complex measurement which
carries both the filter’s Fourier magnitude and phase infor-
mation. As it suppresses any Gaussian noise effects due to

the properties of HOS, it is possible to reconstruct filter in-
formation blindly from any output signal even in low SNR
conditions. The frequency domain filter S(n) of the model
neurophysiological signal x(t) can be computed as below:

S(n) = exp[cBx(n,0)− cBx(0,0)] (4)

The phase unwrapping procedure [14] may need to be ap-
plied to Eq. (4). The time domain inverse filter s−1(t) of the
model neurophysiological process can be estimated from the
frequency domain filter measurement S(n) as below

S−1(n) =
1

S(n)

and s−1(t) = F−1[S−1(n)] (5)

Further details may be found in [14].

2.2 Noise Suppression and Thresholding
Initially we assume the noise amplitude in neurophysiolog-
ical recordings to be lower than the signal amplitude. Con-
sequently, the amplitude of the noise term at the output of
inverse filter (ew(t) of Eq. (2)) will be lower than the am-
plitude of associated delta sequence (point process) (e(t)).
If the the SNR is high, then e(t) can be found using simple
amplitude thresholding on Eq. (2). For lower SNR, we can
improve on simple amplitude thresholding using additional
processing on z(t) to enhance the delta sequence. We de-
noise the inverse filtered output signal z(t) using the discrete
stationary wavelet transformation employing the first coiflet
wavelet (coif1) for decomposition and reconstruction. This
was chosen because the shape of a delta sequence in a noise
free z(t) is very similar to the shape of first coiflet wavelet,
whereas noise in z(t) generally has a different shape. Note
that the delta sequence found in Eq. (2) is independent of the
shape of the neuron spike or additive noise. However, even
after denoising in this way, if the delta sequence is not en-
hanced sufficiently, we use the square or cubic term of the
denoised inverse filtered signal.

Setting the amplitude threshold to cut the noise term from
the denoised signal is very sensitive: a low threshold level
can increase false detection (false positive) while a higher
threshold level can increase the number of missing spikes
(false negative). In general, the square or cubic function of
the denoised inverse filtered signal can enhanced the delta
sequence and reduce the noise term. Therefore, setting an
appropriate amplitude threshold selection is less difficult in
this case. The formula below may be applied to cut out the
noise term from the square or cubic function of denoised in-
verse filtered signal y(t) (where y(t) = [dz(t)]n; dz(t) is z(t)
denoised using the coiflet wavelet and n is any integer)

θy =
1
N

N

∑
t=1

y(t)+ k ∗σy (6)

where k is a constant and σy is the standard deviation of the
signal y(t). The signal above threshold value [i.e. ê(t) =
max(0,y(t)−θy)] may now be used to estimate the delta se-
quence equivalent to input signal e(t).

3. FINDING SPIKES IN SYNTHESIZED DATA

The performance of the proposed spike detection algorithm is
assessed using Monte Carlo trials on synthesized data. Syn-
thetic data is used so that the ground truth is known. Errors



take two forms: missing spikes (false negative) and inserted
spikes (false positive).

3.1 Synthesized Neurophysiological Signal
We use the algorithm and code from [15] for generating in-
dependent synthesized signals. This models the extracellular
signal as a linear mixture of three types of signal:
1. one (or a linear mixture of multiple) target neural spike

trains - each spike train is randomly distributed (using a
Poisson process but with some minimum inter-spike time
interval). The signal is generated by convolving a spike
shape with the spike train (a different shape may be used
for each target neuron). The shape of the spike is a re-
alistic extracellular spike signal generated from an intra-
cellular signal [15].

2. neural noise - a linear mixture of a few neural spike trains
generated by neighboring neurons. The generation of
each of these spike signals is similar to the target neu-
ral signals. The noise spike trains are highly correlated
with the target neural spikes, i.e., the noise spikes appear
at around the time of target neuron’s spikes.

3. other noise - a set of uncorrelated spike signals (gener-
ated in a similar way) and independent identically dis-
tributed random signals.

3.2 Signal to Noise Ratio (SNR)
There are a range of techniques for SNR estimation. The
instantaneous (power) SNR is the ratio of signal power to
background noise power at that instant. It can also be
computed from the ratio of the amplitude of the signal to
the standard deviation of (zero-mean) background noise.
These techniques are most appropriate where the signal is of
near-constant amplitude. But in neurophysiology the signal
(spike) is highly dynamic. In this case different techniques
may be used as discussed by [10, 15]. Following [15] we
computed the ratio of the maximum peak to peak amplitudes
of the signal and the background noise. To observe the per-
formance of algorithm at different SNRs, we simply manip-
ulate the noise amplitude.

3.3 Performance Evaluation
Extracellular recordings may contain more than one type of
spike train. The overall shape of an extracellularly recorded
spike is usually biphasic: however, the amplitude and/or du-
ration of each phase differs for different source neurons be-
cause of the nature of the conduction path from neuron to
electrode. Each experiment involves one or more sets of syn-
thetic neurophysiological signals (1 set = 50 signals) where
each signal is 5 seconds long and sampled at 24kHz.

The first experiment uses 6 sets (= 300 signals) of syn-
thetic signals where each signal contains two dominant spike
trains with different shapes (Fig. 1). Each set of signals
has identical spike trains but the noise amplitude(synthesized
using 7 correlated and 15 uncorrelated neurons) is varied.
The SNRs used are 0dB, -10dB, -20dB, -30dB, -40dB and
-50dB. The firing rate of each spike train is approximately
50Hz (±5Hz), giving altogether 500 (±5) spikes in 5 sec-
onds of simulated signal. When comparing detected spikes
with ground truth, we allow a tolerance of 0.5ms on each
event. Since the amplitude threshold in the proposed tech-
nique (discussed in section 2.2) is highly dependent on SNR
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Figure 1: The two spike shapes used to synthesize signals for
performance evaluation.
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Figure 2: Algorithm Performance showing the spike detec-
tion capability and the false positive error (inserted spikes)
calculated as a percentage of total actual spikes. The dotted
line shows the standard deviation.

value, we tune it so that it minimizes the sum of missing and
inserted spike events.

Two performance measures are computed and shown
with respect to the percentage of actual spike events: detec-
tion and insertion of spikes. The mean detection distribution
at different SNRs (Fig 2 top) shows that the algorithm can
detect 99% spikes at SNR up to -10dB. In addition, the de-
tection performance is almost same for all signals as the stan-
dard deviation is only 0.5% on 50 Monte Carlo tests. The dis-
tribution of inserted spikes (Fig 2 bottom) shows that 0.2%
insertion errors may occur using this technique and this per-
formance is found on 99.5% of test signals. We note that the
algorithm performs better at 0dB or positive SNR.

3.4 Comparison with other techniques
We compare the proposed technique (cob) with four estab-
lished spike detection methods. These are a wavelet based
technique (wav) [10], a double sided amplitude thresholding
technique (plain) [3], a morphological filtering based tech-
nique (morph) [17], and a non-linear energy operator based
technique (neo) [8]. We programmed the algorithms for the
above except for the wavelet based technique, since software



15 10 5 0 −5 −10 −15
0

20

40

60

80

100

Noise Level (in dB)

Er
ro

r (
in

 %
)

Total Detection Error

cob
wav
morph
plain
neo

Figure 3: Comparison of five spike detection techniques: the
four already established techniques and the cob technique.
The graph shows the percentage of total (missing and in-
serted spike) errors.

was provided by Z. Nenadic, author of [10]. We use the same
set of signals (containing two dominant spike trains at dif-
ferent noise levels) as described above. All algorithms are
applied to each set of signals and the total error computed:
missing plus inserted spikes. Since all methods employ am-
plitude thresholding, we use, as previously, a flexible thresh-
old for each individual method to achieve the minimum total
error. Figure 3 compares the performance of all methods,

All methods except cob deteriorate rapidly with decreas-
ing SNR when the SNR falls below 0dB. Wav shows a high
number of failures even at higher SNR. In the case of Neo, we
observe fewer missed spikes at SNR up to nearly 0dB, but at
the same time, a high number of inserted spikes are observed
so that the resultant performance is not good at low SNR. The
technique plain shows the highest failure rate when the sig-
nal’s SNR is below 10dB. Unlike the other techniques, the
total error observed by cob is always smaller value in both
failure modes. Hence cob outperforms the the established
techniques on this dataset.

4. FINDING SPIKES IN REAL SIGNALS

Real biomedical signals always differ from synthetic signals.
To test our new technique with real signals, we have used a
multiunit neurophysiological recording from the temporal
lobe of an epileptic patient from Itzhak Fried’s lab at UCLA
(available at http://www2.le.ac.uk/departments/
engineering/extranet/research-groups/
neuroengineering-lab/software). The signal is
60 seconds long and sampled at 32kHz. Here we have
arbitrarily selected a 5 second segment and applied a high
pass filter (cut-off frequency 200Hz) to cut out instrumental
and electrical artifacts. We apply cob to the filtered signal.
Fig. 4 shows the algorithm’s output. This confirms that the
algorithm is suitable for real neurophysiological signals.

The algorithm uses amplitude thresholding in its final
stage as described in section 2.2. We, therefore, observe the
number of spike events at different thresholds. Fig. 5 shows
the number of spikes at different thresholds for this 5 second
signal. 10 spikes are found over a wide range of thresholds,
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Figure 4: cob applied to a segment of a human brain signal
acquired from temporal lobe. Only 1.25 second are displayed
here. A low threshold (θy = 0.01 at normalized y) was used,
identifying many spikes.

but up to 40 may be found by decreasing the threshold. These
spikes may be from one or many neurons.

5. DISCUSSION AND CONCLUSION

Extracellular recordings contain single or multiple spike
trains plus some correlated and uncorrelated noise. The am-
plitude of a spike need not be greater than the additive noise
(including instrumental/electrical noise). Since a spike signal
lasts for 1-2 ms, higher frequency components dominate. En-
gineers, therefore, use a high sampling frequency to digitize
neurophysiological signals and use a high pass filter. Neuro-
physiological recordings are much longer than single spike
signals, which assists higher order statistics estimation. Es-
timation of the inverse filter is based on cepstrum of bispec-
trum and this needs a sufficiently large volume of data. We
find that processing 50 spikes at a time (here, 5s of data) pro-
vides sufficient spike information. The amount of data to be
processed at a time can be extended (or reduced) depending
on the signal of interest and the frequency of its occurrence:
e.g, to observe spikes from in the Delta band of a neuro-
physiological signal, a longer duration would need to be pro-
cessed. Note that a large data set may violate the linearity
condition for bispectrum estimation.

The proposed technique is independent of sampling fre-
quency: the sampling frequency is required to convert the
signal from the time domain to frequency domain. In con-
verting from time to frequency domain the number of sam-
ples should be equivalent to least double the duration of a
spike shape: here we have used 256 samples throughout.

The critical step in this technique is the estimation of the
inverse filter. From previous work [14] CoB can reconstruct
any filter (minimum, non-minimum or maximum phase sys-
tem) information with very low variance from any Poisson
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els.

triggered filter process. Further, CoB can reconstruct the fil-
ter from the signal at very low SNR. Hence, we apply the
CoB based reconstructed filter to the signal for inverse filter-
ing so that we can find the triggered sequence. We observe
in all experiments with synthetic signals that the trigger se-
quence has been estimated from the signal at SNR below 0dB
and it has been possible due to the properties of CoB.

One clear advantage of this algorithm is lowered sensi-
tivity to noise. With the appropriate threshold, CoB does not
insert spikes. We found that the established techniques fail
on detection and insert events when the test signal’s SNR is
0dB or better, whereas the proposed algorithm is free from
these errors. The method plain detects event without pre-
processing and as a result, it is subject to missing and in-
sertion errors. The technique morph suppresses noise on the
basis of the shape of the spike signal and noise. However it
can fail to detect spike events if a spike signal is corrupted
by noise and changes its shape. Some noise shapes can be
interpreted as false spikes. The technique wav use wavelet
transformation and its coefficients. The choice of mother
wavelet is crucial because the spike shapes may differ con-
siderably and because spikes are corrupted in different ways
by noise. Thus wav fails to detect some spike signals and
can give errors even at high SNR (Fig. 3). The technique
neo provides the instant non-linear energy without checking
the spike shape and, therefore, tends to insert spikes. The
method cob uses a more sophisticated preprocessing tech-
nique which inverts the original convolution. This makes it
much more immune to additive noise. This matters because
many electrophysiological signals have poor SNR. The pro-
posed technique provides considerable advantages over the
other techniques is this case. Future work will use additional
real signals, and use receiver operating characteristic (ROC)
curves for algorithm assessment.
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